Abstract

For the purpose of assessing mutagenic effects (clastogenicity) of metabolites derived from chemical mutagens/carcinogens on human sperm chromosomes, spermatozoa were exposed in vitro to cyclophosphamide (CP), benzo(a)pyrene (BP) or N-nitrosodimethylamine (NDMA) for 2 h in the presence or absence of rat liver S9, a metabolic activator of these chemicals. After in vitro fertilization between human spermatozoa and zona-free hamster oocytes, chromosome complements of sperm origin were analyzed cytogenetically. In the absence of S9, none of three chemicals (20 μg/ml CP, 200 μg/ml BP and 20 mg/ml NDMA) caused a significant increase in spermatozoa with structural chromosome aberrations (8.6, 10.0 and 7.5%), as compared with their matched controls (10.9, 11.0 and 8.5%). In the presence of S9, however, a significant increase in chromosomally abnormal spermatozoa was observed in CP (37.1%, P<0.001) and BP (31.0%, P<0.001), indicating that enzymatic activation of CP and BP induced chromosomal abnormalities in human sperm. In contrast, NDMA did not induce chromosome aberrations in human spermatozoa by S9 treatment, although positive results have been observed in somatic cells. The present results on in vitro clastogenicity of CP, BP and NDMA are consistent with the results in previous in vivo studies with murine spermatozoa. Our S9/human sperm chromosome assay seems to be useful for estimation of hereditary risk of chemicals in human. Because most chemicals need metabolic activation to bind to DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call