Abstract

The regulation of mitochondrial biogenesis is under the control of nuclear genes including the master Mitochondrial Transcription Factor A (TFAM). Recent evidence suggests that the expression of TFAM is regulated by microRNAs (miRNAs) in various cellular contexts. Here, we show that hsa-miR-155-5p, a prominent miRNA encoded in chromosome 21, controls the expression of TFAM at the post-transcriptional level. In human fibroblasts derived from a diploid donor, downregulation of TFAM by hsa-miR-155-5p decreased mitochondrial DNA (mtDNA) content. In contrast, downregulation of TFAM by hsa-miR-155-5p did not decrease mtDNA content in fibroblasts derived from a donor with Down syndrome (DS, trisomy 21). In line, downregulation of mitochondrial TFAM levels through hsa-miR-155-5p decreased mitochondrial mass in diploid fibroblasts but not in trisomic cells. Due to the prevalence of mitochondrial dysfunction and cardiac abnormalities in subjects with DS, we examined the presence of potential associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. There were significant negative associations between hsa-miR-155-5p and TFAM expression in heart samples from donors with and without DS. These results suggest that regulation of TFAM by hsa-miR-155-5p impacts mitochondrial biogenesis in the diploid setting but not in the DS setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.