Abstract

Incorporation of a second polar body (PB2) into one of the blastomeres has been considered as a causal mechanism underlying diploid/triploid mixoploidy in humans. Using a mouse model, we examined whether PB2s can participate in the formation of mixoploidy. Uptake of BrdU was examined to determine DNA synthesis in PB2s up to 28 h after fertilization. PB2s from embryos at 4-6 (1-cell), 24 (2-cell), 48 (4-cell), and 72 h (morula) were fused with MII oocytes to induce premature chromosome condensation. Caspase and TUNEL assays were used to detect apoptotic PB2s at 24, 48, and 72 h. PB2s were fused with one of the blastomeres of the 2-cell embryos to produce mixoploid embryos. DNA synthesis in the PB2s continued until 22 h after fertilization. At 4-6 h, nearly all of the PB2s showed G1-type chromosomes and there was no significant increase in chromosome damage. At 24, 48, and 72 h, S-type chromatin predominated. Few PB2s showed apoptotic response until 72 h. Regardless of the fusion with the PB2, more than 90 % of the embryos developed to 4-cell stage, and over 80 % of the resultant 4-cell embryos had daughter blastomeres with a morphologically normal nucleus. Some of the daughter blastomeres displayed triploidy. The PB2 is viable for at least 72 h after fertilization, with slow progression through the cell cycle. Once the PB2 has been incorporated into a blastomere, the cell cycle of the PB2 might be synchronized with that of the host resulting in diploid/triploid mixoploidy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call