Abstract

Several studies have demonstrated that there are genetic influences on free-choice oral nicotine consumption in mice. In order to establish the genetic architecture that underlies individual differences in free-choice nicotine consumption, quantitative trait loci (QTL) mapping was used to identify chromosomal regions that influence free-choice nicotine consumption in male and female F(2) mice derived from a cross between C57BL/6J and C3H/HeJ mice. These two mouse strains were chosen not only because they differ significantly for oral nicotine consumption, but also because they are at or near phenotypic extremes for all measures of nicotine sensitivity that have been reported. A four-bottle choice paradigm was used to assess nicotine consumption over an 8-day period. The four bottles contained water or water supplemented with 25, 50 or 100 microg/ml of nicotine base. Using micrograms of nicotine consumed per milliliter of total fluid consumed per day as the nicotine consumption phenotype, four significant QTL were identified. The QTL with the largest LOD score was located on distal chromosome 1 (peak LOD score = 15.7). Other chromosomes with significant QTL include central chromosome 4 (peak LOD score = 4.1), proximal chromosome 7 (peak LOD score = 6.1) and distal chromosome 15 (peak LOD score = 4.8). These four QTL appear to be responsible for up to 62% of the phenotypic variance in oral nicotine consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.