Abstract

The physical mapping of three abundant tandemly repeated DNA sequences, CON1, CON2, and COM2, and the distributional pattern of AT- and GC-rich regions in the chromosomes of 32 species of the grass family Poaceae have been established by means of fluorescence in situ hybridization and fluorochrome banding with chromomycin and DAPI. Additionally, locations of 5S, 35S rDNA, and the C-banding pattern were examined. All satellite DNAs (satDNA) tested are situated predominantly subtelomerically in the chromosomes, but occur also colocalized with 35S and 5S ribosomal DNAs (rDNA). Especially, CON2 is most often colocalized with the 5S rDNA, but is evolutionarily not derived from it. Subtelomeric heterochromatin bands are frequently, but not always correlated with satDNA bands. Moreover, the DAPI- or rarely chromomycin-positive stainability of heterochromatin is not caused by these satDNAs as revealed by their sequence organization, showing too few clusters of AT or GC base pairs as required for binding of the fluorochromes. The occurrence of satDNAs is not correlated with that of other components of the heterochromatin. Proportions of satDNAs and other sequences of the heterochromatin relative to the entire genome appear subjected to a much faster evolutionary change than the rather stable proportions of the rDNAs. Heteromorphism in banding patterns found in many species is related in most instances with breeding system and life form. The independent evolution and amplification of different satDNAs is discussed in relation to molecular phylogenetic data. The value and limitations of satDNA data in addressing systematic questions in grasses is exemplified for several grass subfamilies and tribes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.