Abstract

Chromosomal inversions are often thought to facilitate local adaptation and population divergence because they can link multiple adaptive alleles into non-recombining genomic blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles to high frequency in a population, particularly in the face of maladaptive gene flow. But what if ecological conditions and hence selection on inversion-linked alleles change? Reduced recombination within inversions could then constrain the formation of optimal combinations of pre-existing alleles under these new ecological conditions. Here, we outline this idea of inversions limiting adaptation and divergence when ecological conditions change across time or space. We reason and use simulations to illustrate that the benefit of inversions for local adaptation and divergence under one set of ecological conditions can come with a concomitant constraint for adaptation to novel sets of ecological conditions. This limitation of inversions to adaptation may contribute to the maintenance of polymorphism within species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.