Abstract

Microbial production of hyaluronic acid (HA) is an attractive substitute for extraction of this biopolymer from animal tissues. Natural producers such as Streptococcus zooepidemicus are potential pathogens; therefore, production of HA by recombinant bacteria that are generally recognized as safe (GRAS) organisms is a viable alternative that is being extensively explored. However, plasmid-based expression systems for HA production by recombinant bacteria have the inherent disadvantage of reduced productivity because of plasmid instability. To overcome this problem, the HA synthesis genes (hasA-hasB and hasA-hasB-hasC) from has-operon of S. zooepidemicus were integrated into the chromosome of Lactococcus lactis by site-directed, double-homologous recombination developing strains VRJ2AB and VRJ3ABC. The chromosomal integration stabilized the genes and obviated the instability observed in plasmid-expressed recombinant strains. The genome-integrated strains produced higher molecular weight (3.5-4 million Dalton [MDa]) HA compared to the plasmid-expressed strains (2 MDa). High molecular weight HA was produced when the intracellular concentration of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and uridine diphosphate-glucuronic acid (UDP-GlcUA) was almost equal and hasA to hasB ratio was low. This work suggests an optimal approach to obtain high molecular weight HA in recombinant strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call