Abstract

Chromosomal instability (CIN) is associated with poor outcome in epithelial malignancies, including breast carcinomas. Evidence suggests that prognostic signatures in estrogen receptor-positive (ER(+)) breast cancer define tumors with CIN and high proliferative potential. Intriguingly, CIN induction in lower eukaryotic cells and human cells is context dependent, typically resulting in a proliferation disadvantage but conferring a fitness benefit under strong selection pressures. We hypothesized that CIN permits accelerated genomic evolution through the generation of diverse DNA copy-number events that may be selected during disease development. In support of this hypothesis, we found evidence for selection of gene amplification of core regulators of proliferation in CIN-associated cancer genomes. Stable DNA copy-number amplifications of the core regulators TPX2 and UBE2C were associated with expression of a gene module involved in proliferation. The module genes were enriched within prognostic signature gene sets for ER(+) breast cancer, providing a logical connection between CIN and prognostic signature expression. Our results provide a framework to decipher the impact of intratumor heterogeneity on key cancer phenotypes, and they suggest that CIN provides a permissive landscape for selection of copy-number alterations that drive cancer proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.