Abstract
Chromosomal inversions have been implicated in facilitating adaptation in the face of high levels of gene flow, but whether chromosomal fusions also have similar potential remains poorly understood. Atlantic salmon are usually characterized by population structure at multiple spatial scales; however, this is not the case for tributaries of the Miramichi River in North America. To resolve genetic relationships between populations in this system and the potential for known chromosomal fusions to contribute to adaptation, we genotyped 728 juvenile salmon using a 50K SNP array. Consistent with previous work, we report extremely weak overall population structuring (Global FST =0.004) and failed to support hierarchical structure between the river's two main branches. We provide the first genomic characterization of a previously described polymorphic fusion between chromosomes 8 and 29. Fusion genomic characteristics included high LD, reduced heterozygosity in the fused homokaryotes, and strong divergence between the fused and the unfused rearrangement. Population structure based on fusion karyotype was five times stronger than neutral variation (FST =0.019), and the frequency of the fusion was associated with summer precipitation supporting a hypothesis that this rearrangement may contribute local adaptation despite weak neutral differentiation. Additionally, both outlier variation among populations and a polygenic framework for characterizing adaptive variation in relation to climate identified a 250-Kb region of chromosome 9, including the gene six6 that has previously been linked to age-at-maturity and run-timing for this species. Overall, our results indicate that adaptive processes, independent of major river branching, are more important than neutral processes for structuring these populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.