Abstract

To test whether chromosomal instability is associated with familial Alzheimer's disease, we examined breakage on X chromosomes of fibroblasts derived from patients with familial Alzheimer's disease, using gene cotransfer methodology. The X chromosome is a convenient target for analyzing DNA breakage because of its numerous markers and ease of selection in rodent-human hybrid cells. Patients with familial Alzheimer's disease, including the large Nova Scotia Alzheimer's kindred, show a significantly lower cotransfer of the X-linked glucose-6-phosphate dehydrogenase (G6PD) gene with the selected HPRT gene in hybrid cells, indicating breakage between the markers. Lower cotransfer of the more distant X-linked gene, MIC-2, was statistically significant in this kindred, but not in other patients with familial Alzheimer's disease. The distance between MIC2 and HPRT is sixfold to ninefold greater than that between HPRT and G6PD, suggesting that there may be a "hot spot" for breakage in the latter interval on the X chromosome of patients with familial Alzheimer's disease. The somatic cell hybrid model provides insights into underlying mechanisms for chromosomal breakage induced by the Alzheimer defect. A hypothesis implicating a candidate gene, C1-THF synthase, in the generation of chromosome instability in the pathogenesis of familial Alzheimer's disease, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.