Abstract

BackgroundIn this study we examined the karyotypes of morphologically indistinguishable populations of the electric knifefish Gymnotus carapo sensu stricto from the Eastern Amazon of Brazil. These were identified unambiguously on the basis of external morphology, meristics, and pigmentation.ResultsSpecimens from one of five localities exhibited a karyotype previously not documented for Gymnotus species in the Amazon basin: 2n = 40 (34M/SM+6ST/A). Samples from the other four localities exhibited a different karyotype: 2n = 42 (30M/SM+12ST/A), which we had previously described. Specimens from all five localities presented constitutive heterochromatin in the centromeric region of almost all chromosomes, including in the distal and interstitial regions. Staining with 4'6-Diamidino-2-phenylindole revealed C-positive banding. In both karyotypes the Nucleolar Organizer Region (NOR) was located on the short arm of pair 20, and Chromomycin A3 stained the NORs. Fluorescent in situ hybridization with telomeric probes showed an Interstitial Telomeric Sequence (ITS) in the proximal short arm of a metacentric pair in the 2n = 40 karyotype.ConclusionThe difference between the two karyotypes on the diploid number and chromosome morphology can be explained by rearrangements of the fusion-fission type and also by pericentric inversions. The presence of ITS in a metacentric pair of the 2n = 40 karyotype suggests that the difference in the diploid number of the karyotypes results from a fusion. The consistent 2n = 42 karyotype at four localities suggests an interbreeding population. However, because fusion-fission and pericentric inversions of this nature typically result in reproductive isolation, we speculate that the form with the 2n = 40 karyotype is a different species to that of the 2n = 42 form. Nonetheless, we did not observe evident differences in external morphology, meristics and pigmentation between the two forms, which suggest that they represent cryptic sympatric species in the G. carapo species complex. We speculate that the chromosomal speciation occurred recently, allowing insufficient time for the fixation of other differences following post-zygotic isolation.

Highlights

  • In this study we examined the karyotypes of morphologically indistinguishable populations of the electric knifefish Gymnotus carapo sensu stricto from the Eastern Amazon of Brazil

  • Whether this diversity is the manifestation of cryptic species diversity in a G. carapo species-complex or, alternatively, intraspecific cytogenetic diversity is currently unknown. This question is of great relevance to our understanding of diversification in the genus. In this contribution, which forms the second in a series on the evolutionary cytogenetics of Gymnotus, we describe a novel karyotype in a population of Gymnotus carapo from the Eastern Amazon

  • Morphological measurements as a proportion of total length (TL) were not included for analysis in specimens with damage to the caudal appendage exceeding an estimated 5% of intact TL

Read more

Summary

Introduction

In this study we examined the karyotypes of morphologically indistinguishable populations of the electric knifefish Gymnotus carapo sensu stricto from the Eastern Amazon of Brazil. These were identified unambiguously on the basis of external morphology, meristics, and pigmentation. Gymnotus (Gymnotiformes, Gymnotidae) is the most diverse known Neotropical electric knife fish genus. It currently holds 33 valid described species and many additional undescribed species are known from museum collections [1,2,3,4]. Gymnotus has the ability to generate a pulsed electrostatic field from a specialized electric organ and detect electrostatic fields with electroreceptors. The Linnaean syntypes of G. carapo were collected in the first half of the 18th Century near Paramaribo, Surinam [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call