Abstract

BackgroundSalmonella infection poses significant public health threat globally, especially in resource-limited countries. Emergence and spread of antibiotic resistant strains to fluoroquinolones have led to treatment failures and increased mortality in Salmonella infection. However, there is dearth of information regarding mechanisms of resistance to fluoroquinolones in Ghana. This study therefore sought to identify chromosomal mutations and plasmid-mediated resistance as possible mechanisms of fluoroquinolone resistance from clinical isolates in Ghana.MethodsThis was a retrospective study of archived isolates biobanked at Kumasi Centre for Collaborative Research in Tropical Medicine, Ghana. Isolates were obtained from blood, stool and oropharynx samples at two hospitals, between May, 2016 and January, 2018. Salmonella identification was done using standard microbiological protocols and antibiotic susceptibility testing performed by Kirby-Bauer disc diffusion method. Isolates with intermediate susceptibility and/or resistance to nalidixic acid and/or ciprofloxacin were selected and examined for chromosomal mutations by Sanger sequencing and plasmid-mediated resistance by PCR.ResultsOf 133 biobanked isolates cultured, 68 (51.1%) and 16 (12%) were identified as Salmonella Typhi and non-typhoidal Salmonella (NTS), respectively. Sequence analysis of gyrA gene revealed the presence of 5 different nonsynonymous mutations, with the most frequent mutation (Ile203Ser) occurring in 12 out of 13 isolates tested. Gyrase B (gyrB) gene had 1 nonsynonymous mutation in 3 out of 13 isolates, substituting phenylalanine with leucine at codon 601 (Phe601Leu). No mutation was observed in parC and parE genes. Two NTS isolates were found to harbour qnrS plasmid-mediated resistant gene of molecular size 550 bp with high ciprofloxacin MIC of 0.5 μg/ml.ConclusionThis study reports for the first time in Ghana plasmid-mediated fluoroquinolone resistant gene qnrS in Salmonella clinical isolates. Nonsynonymous mutations of gyrA and gyrB genes likely to confer Salmonella reduced susceptibility to ciprofloxacin were also reported.

Highlights

  • Salmonella infection poses significant public health threat globally, especially in resource-limited countries

  • Study population comprised patients that presented with fever at Komfo Anokye Teaching Hospital (KATH) and Agogo Presbyterian Hospital (APH) in the Kumasi Metropolis and Asante-Akim North district, respectively, both located in the middle belt of Ghana

  • Sequence analysis of gyrA gene revealed the presence of 5 different nonsynonymous mutations, with the most frequent mutation (Ile203Ser) occurring in 12 out of 13 isolates tested (Table 6)

Read more

Summary

Introduction

Salmonella infection poses significant public health threat globally, especially in resource-limited countries. Emergence and spread of antibiotic resistant strains to fluoroquinolones have led to treatment failures and increased mortality in Salmonella infection. This study sought to identify chromosomal mutations and plasmid-mediated resistance as possible mechanisms of fluoroquinolone resistance from clinical isolates in Ghana. Human Salmonella enterica infection poses a significant public-health challenge globally, especially in low-tomiddle income countries in sub-Saharan Africa and South Asia where sanitation is poor [1]. There has not been structured surveillance mechanism(s) to identify mutations possibly associated with its resistance in Ghana. Phenotypic resistance could be available in some clinical laboratories, there is paucity of data on molecular investigations of fluoroquinolone resistant genes associated with Salmonella infection in Ghana and many African countries

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call