Abstract

Ductal carcinoma in situ (DCIS) is a preinvasive lesion of the breast with an inherent but nonobligatory tendency for progression to invasive breast cancer. Although the transition from in situ to invasive disease is critical to the development of breast cancer, molecular and biological changes responsible for this transition are not well characterized. Chromosomal alterations at 26 regions were assayed in 66 DCIS lesions and 111 invasive ductal carcinomas. Levels and patterns of allelic imbalance (AI) were compared between grade 1 DCIS and well-differentiated breast carcinomas, and between grade 3 DCIS and poorly differentiated invasive breast carcinomas, using Fisher's exact and Student's t-tests. Levels of AI were significantly lower (P < 0.01) in grade 1 DCIS (11.9%) compared to well-differentiated carcinomas (19.2%), but were not significantly different between grade 3 DCIS and poorly differentiated tumors. No significant differences were detected at any of the 26 chromosomal regions between low-grade DCIS and invasive tumors; however, AI events at chromosomes 1p36, 11q23, and 16q11-q22 could discriminate high-grade in situ from invasive disease. Lower levels of AI in low-grade in situ compared with invasive disease may reflect the protracted time to progression associated with low-grade DCIS. Increased levels of AI at chromosomes 1p36 and 11q23 in poorly differentiated carcinomas may harbor genes associated with invasiveness, while loss of chromosome 16q11-q22 may prevent the transition from in situ to invasive disease. Further characterization of these changes may provide molecular assays to identify DCIS lesions with invasive potential as well as targets for molecular therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call