Abstract

Conventional methods of chromium removal are often insufficient for the remediation of chromium-contaminated natural environments, necessitating the development of alternative strategies. In this paper, we report the isolation of a novel Morganella morganii strain capable of reducing hexavalent chromium to its less-toxic and less-soluble trivalent form. Cr(VI) reduction by this strain was evaluated in both acidic environments and conditions reflecting natural freshwater sources. The isolate achieved equilibrium within 3 h and displayed a specific uptake rate of 24.30 ± 1.67 mg Cr(VI)/g biomass following HCl treatment. Without acid treatment, a reduction of over 90% was recorded within 72 h for an initial Cr(VI) concentration 20 mg/L, corresponding to a Cr(VI) removal capacity of 19.36 ± 1.89 mg/g. Absorption data of acid-treated STB5 biomass most closely followed the Toth and Langmuir models. FTIR results indicate that hydroxyl groups and extracellular or cell membrane polysaccharides may be potential adsorption sites for hexavalent chromium. Our results suggest that the isolate may be used in situ for treatment of polluted freshwater environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.