Abstract

In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium–cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption–desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox® commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call