Abstract

CuFe2−xCrxO4 spinel (0≤x≤2) powders were synthesized by a soft chemistry method—the gluconate multimetallic complex precursor route. The complex precursors were characterized by elemental chemical analysis, infrared (IR) and ultraviolet–visible (UV–vis) spectroscopy, thermal analysis and Mössbauer spectroscopy. The oxide powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), IR, Raman and Mössbauer spectroscopy. It was shown that the structure, morphology and magnetic properties of the obtained spinel powders depend on the concentration of Cr3+ ion. The XRD of the chromium substituted copper ferrite powders calcined at 700°C/1h indicated the formation of a cubic spinel type structure for x=0.5, 1.0 and a tetragonal structure for x=0, 0.2, 2. The crystallite size ranged from 19nm to 39nm. The Mössbauer spectroscopy revealed the site occupancy of iron ions, relative abundance and internal hyperfine magnetic fields in both tetrahedral and cubic CuFe2−xCrxO4 spinels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.