Abstract

In this study, we developed and compared three different methods for chromium speciation in water samples using microfluidic paper-based analytical devices (μPADs). In all methods, detection was based on the complexation reaction of Cr(VI) with diphenylcarbazide on the μPADs. Cr(III) ions were oxidized to Cr(VI) by Ce(IV) prior to colorimetric detection on the μPADs. In the first method, oxidization of Cr(III) to Cr(VI) in the solution containing both trivalent and hexavalent chromium was performed using a batch procedure to obtain total chromium. A dual electromembrane extraction (DEME) technique for simultaneous preconcentration and extraction of chromium species and a single electromembrane extraction (SEME) for preconcentration and extraction of Cr(VI)/total chromium [quantified as Cr(VI) content after oxidation of Cr(III) ions to Cr(VI)] were used in the second and third methods, respectively. The electromembrane extraction was based on the electrokinetic migration of cationic Cr(III) and anionic Cr(VI) toward the cathode and anode, respectively, into the two different hollow fibres. Octanol-1 and bis(2-ethylhexyl) phosphate (DEHP) in octanol-1 (0.7% v/v) were the most suitable supported liquid membranes for extraction of Cr(VI) and Cr(III), respectively. Among these methods, SEME showed the lowest limits of detection for both analytes.Under optimized conditions, linear calibrations were obtained for Cr(III) from 3 to 30 μg L−1 and for Cr(VI) from 3 to 70 μg L−1. The detection limits were 1.0 μg L−1 and 0.7 μg L−1 for Cr(III) and Cr(VI), respectively. Our developed method was applied to analyse water samples spiked with different concentrations of Cr(III) and Cr(VI) at the parts-per-billion (ppb) level. The statistical evaluation showed that the proposed method agreed well with the validation method, i.e., inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.