Abstract
The catalytic adsorptive stripping voltammetry (CAdSV) has been applied to physico-chemical chromium speciation study in the upper Dunajec catchment, severely polluted by the tannery wastewater. The method is based on the adsorptive preconcentration of the Cr(III)–diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid (DTPA) complex and the utilization of the catalytic reaction in the presence of nitrate. Under optimized conditions the CAdSV enables the oxidation state speciation study of Cr content by direct determination of Cr(VI) in the presence of the predominant Cr(III) concentration with the detection limit for chromium(VI) of 0.08nM and the linearity range from 0.1 to 80nM obtained for 20s of accumulation, as well as the determination of total Cr after UV oxidation of Cr(III) to Cr(VI). Due to the difference in the chemical properties of different chromium species the CAdSV method makes possible a speciation study of Cr(III) and Cr(VI) oxidation state. The RSD of the determination of Cr(VI) and Cr(III) varies from 0.5 to 5%. It has been proved that in natural water in which strong complexants of Cr(III) such a humid acids are presented, Cr(VI) can be determined accurately in the presence of high excess of Cr(III). Fractionation of selected water samples with tangential flow filtration (TFF, cut-off 10 and/or 1kDa) provides insight into physical Cr speciation, i.e. partitioning of the Cr(VI) and Cr(III) between the colloidal and the dissolved fractions. It has been shown that the content of the Cr species in the Dunajec river depends on the season, and is significantly higher in autumn and winter during the most intensive tanneries production processes. The concentration of total Cr exceeds occasionally the legally admissible level. A large fraction of total Cr(III) concentration is associated with the colloidal material, while Cr(VI) occurs solely in the truly dissolved form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.