Abstract

This work investigates the applicability of clinoptilolite, a natural zeolite, as a low-cost adsorbent for removing chromium from aqueous solutions using fixed bed studies. To improve its removal performance for the inorganic pollutant, the adsorbent is pretreated with NaCl to prepare it in the homoionic form of Na+ before undertaking ion exchange with Cr3+ in aqueous solution. This work also evaluates if treated effluents could meet the required effluent discharge standard set by legislation for the target pollutant. To sustain its cost-effectiveness for wastewater treatment, the spent adsorbent is regenerated with NaOH. It was found that the clinoptilolite treated with NaCl has a two-times higher Cr adsorption capacity (4.5 mg/g) than the as-received clinoptilolite (2.2 mg/g). Pretreatment of the clinoptilolite with NaCl enabled it to treat more bed volume (BV) (64 BV) at a breakthrough point of 0.5 mg/L of Cr concentration and achieve a longer breakthrough time (1500 min) for the first run, as compared to as-received clinoptilolite (32 BV; 250 min). This suggests that pretreatment of clinoptilolite with NaCl rendered it in the homoionic form of Na+. Although pretreated clinoptilolite could treat the Cr wastewater at an initial concentration of 10 mg/L, its treated effluents were still unable to meet the required Cr limit of less than 0.05 mg/L set by the US Environmental Protection Agency (EPA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.