Abstract

Since trivalent chromium (Cr 3+) enhances glucose metabolism, interest in the use of Cr 3+as a therapy for type 2 diabetes has grown in the mainstream medical community. Moreover, accumulating evidence suggests that Cr 3+ may also benefit cardiovascular disease (CVD) and atypical depression. We have found that cholesterol, a lipid implicated in both CVD and neurodegenerative disorders, also influences cellular glucose uptake. A recent study in our laboratory shows that exposure of 3T3-L1 adipocytes to chromium picolinate (CrPic, 10 nM) induces a loss of plasma membrane cholesterol. Concomitantly, accumulation of intracellularly sequestered glucose transporter GLUT4 at the plasma membrane was dependent on the CrPic-induced cholesterol loss. Since CrPic supplementation has the greatest benefit on glucose metabolism in hyperglycemic insulin-resistant individuals, we asked here if the CrPic effect on cells was glucose-dependent. We found that GLUT4 redistribution in cells treated with CrPic occurs only in cells cultured under high glucose (25 mM) conditions that resemble the diabetic-state, and not in cells cultured under non-diabetic (5.5 mM glucose) conditions. Examination of the effect of CrPic on proteins involved in cholesterol homeostasis revealed that the activity of sterol regulatory element-binding protein (SREBP), a membrane-bound transcription factor ultimately responsible for controlling cellular cholesterol balance, was upregulated by CrPic. In addition, ABCA1, a major player in mediating cholesterol efflux was decreased, consistent with SREBP transcriptional repression of the ABCA1 gene. Although the exact mechanism of Cr 3+-induced cholesterol loss remains to be determined, these cellular responses highlight a novel and significant effect of chromium on cholesterol homeostasis. Furthermore, these findings provide an important clue to our understanding of how chromium supplementation might benefit hypercholesterolemia-associated disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.