Abstract

Catalysts for oxygen reduction reaction (ORR) are key components in emerging energy technologies such as fuel cells and metal-air batteries. Developing low-cost, high performance and stable electrocatalysts is critical for the extensive implementation of these technologies. Herein, we present a procedure to prepare colloidal chromium phosphide CrP nanocrystals and we test their performance as ORR electrocatalyst. CrP-based catalysts exhibited remarkable activities with a limiting current density of 4.94 mA cm−2 at 0.2 V, a half-potential of 0.65 V and an onset potential of 0.8 V at 1600 rpm, which are comparable to commercial Pt/C. Advantageously, CrP-based catalysts displayed much higher stabilities and higher tolerances to methanol in alkaline solution. Using density functional theory calculations, we demonstrate CrP to provide a very strong chemisorption of O2 that facilitates its reduction and explains the excellent ORR performance experimentally demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call