Abstract

Three chromium ternary complexes with metformin (met) as a primary ligand and bipyridine (bipy) or ortho‐phenylenediamine (opda) or ortho‐phenanthroline (phen) as secondary ligand were synthesized. These complexes [Cr (Cl)2(Hmet)(bipy)]‐(1), [Cr (Cl)2(Hmet)(opda)]‐(2) and [Cr (Cl)2(Hmet)(phen)]‐(3) were characterized by LC–MS, elemental analysis, molar conductance, thermal analysis, infrared spectroscopy, electronic spectroscopy. The geometrical structures have been found to be octahedral. Degradation pattern of the compounds is shown by thermal studies. The Kinetic parameters‐ energy of activation (Ea), enthalpy (ΔH), entropy (ΔS) and free energy changes (ΔG) have been determined by thermogravimetric data. Coats‐Redfern integration method with thirteen kinetic models was used to calculate the kinetic and thermodynamic parameters for the degradation of all the complexes. The stabilities of the complexes were obtained from their molecular orbital structures from which the quantum chemical parameters were calculated using the HOMO‐LUMO energies. UV–Visible absorption, fluorescence, and viscosity measurements have been conducted to assess the interaction of the complexes with CT DNA. The complexes showed absorption hyperchromism in its UV–Vis spectrum with DNA. The binding constants Kb from UV–Vis absorption studies were 3.1x104, 4.4x104, 5x104 M−1 for 1, 2, 3 respectively and Stern–Volmer quenching constants (Ksq) from fluorescence studies were 0.137, 0.532, 0.631 for 1, 2, 3 respectively. Finally, viscosity measurements revealed that the binding of the complexes with CT‐DNA could be surface binding, mainly due to groove binding. The activity of complexes towards DNA cleavage decrease in the order of 3 > 2 > 1.The light switching properties of the complexes were also evaluated. The complexes were docked in to B‐DNA sequence, 5′(D*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)‐3′ retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.