Abstract
The in situ formation and activation of Cr(III) catalysts based on unsymmetrical PNP ligands yield efficient catalytic systems for selective ethylene tri-/tetramerization. The electronic nature (electron-withdrawing or electron-donating) and position (para or meta) of the substituents over the phenyl rings of the PNP, the nature of cocatalyst (DMAO/AlEt3 and MMAO-3A), and reaction conditions have been observed to have a marked impact on catalytic performance, particularly catalytic activity. Ligand L2, bearing 4-(trifluoromethyl)phenyl substituents, yielded 33.6 kg(product).g(Cr)−1·h−1 catalytic activity with 57.7% C8 selectivity under optimal conditions. Ligand L4, having para-tolyl substituents, yielded 43.3 kg(product).g(Cr)−1·h−1 with 59.0% C8 selectivity under optimum conditions. Changing the positions of both the electron-withdrawing and electron-donating substituents from para to meta over the phenyls of the PNP may lead to both catalytic systems exhibiting poor performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.