Abstract

Published and unpublished compositions of chromite in 333 chromitite samples from 14 ultramafic complexes of the Urals are overviewed. The chromitites occur in the mantle unit and/or the supra-Moho cumulate sequence of ophiolite complexes, as well as in Alaskan-type intrusions. They vary in size from giant ore deposits associated with ophiolites (e.g., Kempirsai, Ray-Iz, Voykar-Syninsky) to sub-economic mineralization in the Alaskan-type complexes (e.g., Svetly Bor, Kachkanar). Mantle-hosted chromitites occur either as discordant, podiform, high-Cr ore bodies and sub-concordant elongated lenses of high-Al chromite. In the supra-Moho sequences of ophiolites, chromitite is mainly of the high-Al variety, and occurs as concordant layers alternated with peridotite and pyroxenite cumulates. In the Alaskan-type intrusions of the Urals, chromitite occurs as centimeter to meter-size pods and lenses having syngenetic or epigenetic relationship with the host dunite. Calculated melt compositions in equilibrium with chromite and comparison of chromite composition with those from various volcanic suites, and chromitites from different plutonic complexes, allow division of the Urals chromitites into four different compositional groups, corresponding to different geodynamic environments of formation: 1) The high-Al, low-Ti suite (Al 2 O 3 > 20 wt%, Cr# 20 wt%, Cr# 0.70, Al 2 O 3 0.70, Al 2 O 3 < 20 wt%, TiO 2 = 0.38-1.30 wt%, Fe 3+ # = 0.20-1.29, δ logf(O 2 ) = +0.9 ÷ +5.9) is represented by chromitites from the Urals Alaskan-type intrusions and the East-Khabarny complex. They have crystallized from Fe-rich magma (av. FeO/MgO = 1.35) under oxygen- fugacity conditions well above the FMQ buffer. The melt is characterized by high-Ti, high-K, calc-alkaline composition, having many geochemical characteristics in common with ankaramites. It was generated by partial melting of a fluid-metasomatized mantle source, in a subduction-influenced arc setting. However, the close similarity with the zoned complexes emplaced in the Russian-Far-East craton suggests that formation of Alaskan-type melts may be not restricted to SSZ, island arc settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.