Abstract
New electron-acceptor cores are necessary for developing highly efficient bipolar hosts, particularly for blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs). Herein, chromenopyrazole (CP) was used for the first time as an electron-acceptor core to design and synthesize two novel blue bipolar hosts, viz., 8-(9H-carbazol-9-yl)-3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-one (CzCP) and 8-(9H-[3,9′-bicarbazol]-9-yl)-3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-one (2CzCP). The influence of donor strength on the photophysical, electrochemical, and electroluminescent performances was systematically investigated. CzCP and 2CzCP both maintain high triplet energy (∼3.0 eV), appropriate highest occupied and lowest unoccupied energy levels (HOMO/LUMO), and bipolar nature. Consequently, OLEDs containing CzCP as a host in the emissive layer exhibited state-of-the-art performance with external quantum efficiency of 27.9% and CIE color coordinates of (0.15, 0.21), thus achievin...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.