Abstract

Efficient degradation of organic contaminants by oxidative radicals remains a challenge due to invalid consumption of radicals and easy generation of secondary halogenated pollutants. In this work, an efficient and recyclable bimetallic biochar (Cr-Ti/BC) was developed through peroxydisulfate (PDS) activation via nonradical pathway for sulfamethoxazole (SMX) degradation. The Cr-Ti/BC exhibited excellent catalytic activity for 99.9 % of SMX removal with a high kobs of 0.13 min−1, and negligible inhibitory effects were observed under various pH condition. The activation mechanisms were (i) metastable reactive intermediates (Cr-Ti/BC-PDS) formation via an interaction between Cr-Ti/BC and PDS on the active defective sites (e.g., OH/COC, COOH, CO, nitric oxides, graphitic N, and pyridinic N), and (ii) 1O2 generation through electron transfer between Cr-Ti/BC-PDS intermediates and dissolved oxygen. The high reusability and strong stability of Cr-Ti/BC also verified the outstanding advantage of the Cr-Ti/BC during practical application. This study not only is the first study the catalytic performance of Cr and Ti co-doped biochar for PDS activation, but also successfully provides a promising strategy to induce a nonradical pathway for PDS activation, which is of great significance for the subsequent method design, and thus paving the path for exploiting advanced oxidation systems in practical application for organic contaminant removal toward polluted site remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.