Abstract

Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.

Highlights

  • Since time immemorial, traditional medicines have been playing a significant role in the life of mankind and remain important for the modern medicine despite the abundant number of synthetic available drugs

  • The phytoconstituents of the leaf, fruit and bark were extracted from different tissues of B. retusa using four solvents of different polarities

  • Our results showed that the methanolic bark extract of B. retusa has strong inhibitory effects on α-amylase and α-glucosidase enzymes which may delay the degradation of starch and oligosaccharides

Read more

Summary

Introduction

Traditional medicines have been playing a significant role in the life of mankind and remain important for the modern medicine despite the abundant number of synthetic available drugs. Drug industries are heavily engaged in large-scale pharmacologic screening of medicinal herbs, spices and other food plants with the aim to develop efficient and safer medicines [1]. The screening of poorly explored medicinal plants can be a valuable source of new potential drug candidates. In recent years, nutraceuticals have been largely used and studied as health promoting products [5,6,7], and the search for new potential ingredients for such products, as well as the interest in deeper understanding of their mode of action and ability to interact with human health is today a hot topic. Non-communicable diseases are on the rise causing 71% of deaths globally [8]. Such alarming situation has prompted the need to develop new drugs to improve quality of life and decrease preventable deaths. Cholinesterase inhibitors as donepezil, rivastigmine and galantamine are prescribed to patients to help postponing the symptoms of AD, but they present significant side effects [10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call