Abstract
Silk sericin (SS) is, together with silk fibroin (SF), one of the two proteins forming the silkworm cocoon. SS is ideal ingredient for cosmetic applications in the formulation of specific products for skin care and hair due to its peculiar physical-chemical composition. SS also showed a great potential in different pharmacological and biotechnological applications, as anticancer drug, anticoagulant, cell culture additive, wound healing agent and drug delivery carrier.Reasons for SS use in biomedical applications derive from its physical-chemical composition. As a consequence, a detailed characterization of SS in terms of average molecular weight, molecular weight distribution and hydro/lipophilic character is crucial to properly address and assess its quality, cosmetic or pharmacological use.In this study, the application of different and complementary chromatographic modes allows a detailed investigation of SS protein isolated from wastewater using two diverse extraction methods. Hydrophilic interaction liquid chromatography (HILIC using an AdvanceBio Glycan Map column) and reverse phase (RP using Symmetry300 C18 column) were applied to intact protein characterization to derive data on protein hydrophilicity and on hydrophobic components of the two SS preparations (SS#1 and SS#2). A higher hydrophilic character of SS#1 was observed by HILIC trace, coherently with the preparation method used, while no significant differences in hydrophobicity were detectable in the RPLC separations. Size distribution was also defined by using a SEC-UV-MS method (using TSKgel SuperSW2000 column) properly optimized to maximize both the size selectivity and the method sensitivity.Taken together, the chromatographic data allowed to better characterize the SS samples obtained by different extraction methods, and the structural properties were correlated to their biological activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.