Abstract

AbstractA macroporous silica‐based 1,3‐[(2,4‐diethyl‐heptylethoxy)oxy]‐2,4‐crown‐6‐calix[4]arene (Calix[4]arene‐R14) supramolecular recognition polymeric composite, (Calix[4]+Oct)/SiO2‐P, was synthesized. It was performed by impregnating and immobilizing Calix[4]arene‐R14 and n‐octanol into the pores of the macroporous SiO2‐P particles support. n‐Octanol was used to modify Calix[4]arene‐R14 through hydrogen bonding. The effect of eight typical fission products contained in highly active liquid waste (HLW) on the adsorption of Cs(I), one of the heat generators, was investigated at 298 K by examining the effect of contact time and the HNO3 concentration in a range of 0.3–7.0 M. (Calix[4]+Oct)/SiO2‐P showed excellent adsorption ability and high selectivity for Cs(I) at 4.0 M HNO3 over the tested elements. The partitioning of Cs(I) from a simulated HLW was operated by (Calix[4]+Oct)/SiO2‐P packed column. Cs(I) was able to be effectively eluted by water and separated from the tested metals. It is demonstrated that (Calix[4]+Oct)/SiO2‐P is promising to apply in chromatographic separation of Cs(I) from HLW. © 2010 American Institute of Chemical Engineers AIChE J, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.