Abstract

Reversed-phase (RP) HPLC separation of peptides labeled with amine-reacting tags for relative protein quantitation (iTRAQ4, iTRAQ8 - isobaric tag for relative and absolute quantitation, TMT - tandem mass tag) has been investigated using large-scale proteomics derived retention datasets. These tags have similar chemistry but use linkers of different length and hydrophobicity, moving the positively charged functional groups further from peptide backbone. Peptide hydrophobicity (RP HPLC retention), on average, increases in the following order: non-labeled < iTRAQ4 < iTRAQ8 < TMT under both low pH (0.1% formic acid) and pH 10 eluent conditions. At the same time, the interplay between hydrophobicity and length of the labeling group drives the deviations from this order. Thus, longer and less hydrophobic iTRAQ8 moiety results in greater retention increase for peptides carrying amphipathic helical structures at the N-terminus. Development of a peptide retention prediction models for these modifications was achieved by predicting correspondent retention shifts ΔHI (hydrophobicity index,% acetonitrile) between unmodified and labelled peptide pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call