Abstract

Oxygenated derivatives of cholesterol have important functions in many biochemical processes. These oxysterols are difficult to study because of their low physiological concentrations, the facile formation of cholesterol autoxidation artifacts, and lack of information on their chromatographic behavior. Focusing on metabolites and autoxidation products of cholesterol, we have documented the chromatographic mobilities of 35 oxysterols under a variety of conditions: eight solvent systems for thin-layer chromatography on silica gel, several mobile phases for reversed-phase high-performance liquid chromatography (HPLC), and two types of stationary phase for capillary gas chromatography (GC) using trimethylsilyl derivatives. Notable differences in selectivity could be obtained by modifying the stationary or mobile phases. Separations of oxysterol pairs isomeric at side-chain carbons or C-7 were achieved on normal-phase, reversed-phase, chiral, or silver-ion HPLC columns. Chromatographic behavior is also described for side-chain hexadeuterated and heptafluorinated oxysterols, which are useful as standards in isotope dilution analyses and autoxidation studies, respectively. The overall results are relevant to many problems of oxysterol analysis, including the initial separation of oxysterols from cholesterol, determination of highly polar and nonpolar oxysterols, separation of isomeric pairs, selection of derivatization conditions for GC analysis, and quantitation of the extent of cholesterol autoxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.