Abstract
The four cysteine proteinases, papain, chymopapain, caricain, and endoproteinase Gly-C were isolated and purified as the catalytically competent species from the commercially available latex of the tropical treeCarica papaya L. Their free thiol function (cysteine-25), which is essential for activity, was protected in the form of a mixed disulfide containing a 5 kDa polyethylene glycol (PEG) chain. The second (nonessential) free thiol function (cysteine-117) of chymopapain was blocked similarly. Caricain was also derivatized through acylation of its amino functions by PEG chains (average: 15 moles of PEG per mole of enzyme). The Chromatographic behavior of these conjugates was examined on ion-exchange and hydrophobic gels and compared to the Chromatographic behavior of the unpegylated proteinases. The results indicated that charge-shielding effects by PEG chain(s), surrounding the different proteinases, plays(play) a key role in the course of separation of pegylated and unpegylated species by ion-exchange chromatography. Similarly, PEG chain(s) is(are) able to mask hydrophobic regions on the surface of the proteinases. However, the affinity showed by PEG itself for the hydrophobic ligands immobilized on the matrix is the preponderant factor determining the behavior of the PEG-proteinases conjugates on Fractogel TSKButyl-650.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.