Abstract
Sedimentation analysis has been used to compare the structure of 30-nm chromatin fibers, isolated and digested under conditions that maintain the native structure, with relaxed-refolded chromatin. The native chromatin fibers show sharp, ionic strength-dependent changes in sedimentation coefficient that are not apparent in relaxed-refolded fibers. The first transition at approximately 20 mM ionic strength reflects the organization of the 10-nm polynucleosome chain into a loose helically coiled 30-nm fiber. Between 20 and 60 mM ionic strength there is considerable interaction between nucleosomes within the coils to generate a stable helical array with 12 nucleosomes/turn. Above 60 mM ionic strength the helical coil continues to condense until it precipitates at ionic strengths slightly greater than those considered physiological, indicating that there is no end point in fiber formation. The data is incompatible with a solenoid model with 6 nucleosomes/turn and also rules out the existence of a beaded subunit structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.