Abstract
Numerous DNA transactions in eukaryotic nuclei are regulated by elements (enhancers) that can directly interact with their targets over large regions of DNA organized into chromatin. The mechanisms allowing communication over a distance in chromatin are unknown. We have established an experimental system allowing quantitative analysis of the impact of chromatin structure on distant transcriptional regulation. Assembly of relaxed or linear DNA templates into subsaturated chromatin results in a strong increase of the efficiency of distant enhancer-promoter E-P communication and activation of transcription. The effect is directly proportional to the efficiency of chromatin assembly and cannot be explained only by DNA compaction. Transcription activation on chromatin templates is enhancer- and activator-dependent, and must be accompanied by direct E-P interaction and formation of a chromatin loop. Previously we have shown that DNA supercoiling can strongly facilitate E-P communication on histone-free DNA. The effects of chromatin assembly and DNA supercoiling on the communication are quantitatively similar, but the efficiency of enhancer action in subsaturated chromatin does not depend on the level of unconstrained DNA supercoiling. Thus chromatin structure per se can support highly efficient communication over a distance and functionally mimic the supercoiled state characteristic for prokaryotic DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.