Abstract

Chromatin structure, the organized packaging of DNA with histones in the nucleus, is now seen as a dynamic fabric that changes with development. Here, we use studies on the phaseolin (phas) gene that encodes a seed protein to show how chromatin structure interacts with the transcription machinery to accomplish rigorous spatial regulation of expression. In leaf and other vegetative tissues, a nucleosome is rotationally and translationally positioned over an ensemble of three phased TATA boxes, denying access to TBP. Current interest focuses on the mechanisms by which this architecture is remodeled during embryogenesis. The transcription factor PvALF is intrinsically involved, as are other non-histone proteins and abscisic acid. These concepts, and the possible modular nature of phas expression, are summarized together with speculations concerning the re-establishment of the nucleosome over the phas promoter during terminal stages of embryogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.