Abstract
The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.