Abstract

The β-hemoglobinopathies are the most common monogenic disorders in humans, with symptoms arising after birth when the fetal γ-globin genes are silenced and the adult β-globin gene is activated. There is a growing appreciation that genome organization and the folding of chromosomes are key determinants of gene transcription. Underlying this function is the activity of transcriptional enhancers that increase the transcription of target genes over long linear distances. To accomplish this, enhancers engage in close physical contact with target promoters through chromosome folding or looping that is orchestrated by protein complexes that bind to both sites and stabilize their interaction. We find that enhancer activity can be redirected with concomitant changes in gene transcription. Both targeting the β-globin locus control region (LCR) to the γ-globin gene in adult erythroid cells by tethering and epigenetic unmasking of a silenced γ-globin gene lead to increased frequency of LCR/γ-globin contacts and reduced LCR/β-globin contacts. The outcome of these manipulations is robust, pancellular γ-globin transcription activation with a concomitant reduction in β-globin transcription. These examples show that chromosome looping may be considered a therapeutic target for gene activation in β-thalassemia and sickle cell disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.