Abstract

Estrogens play a central role in the reproduction of vertebrates and affect a variety of biological processes. The major target molecules of estrogens are nuclear estrogen receptors (ERs), which have been studied extensively at the molecular level. In contrast, our knowledge of the genes that are regulated directly by ERs remains limited, especially at the level of the whole organism rather than cultured cells. In order to identify genes that are regulated directly by ERs in vivo, we used estrogen treated mouse uterus and performed chromatin immunoprecipitation. Sequence analysis of a precipitated DNA fragment enabled alignment with the mouse genomic sequence and revealed that the promoter region of the gene encoding aquaporin 5 (AQP5) was precipitated with antibody against ER alpha. Quantitative PCR and DNA microarray analyses confirmed that AQP5 is activated soon after administration of estrogen. In addition, the promoter region of AQP5 contained a functional estrogen response element that was activated directly by estrogen. Although several AQP genes are expressed in the uterus, only direct activation of AQP5 could be detected following treatment with estrogen. This chromatin immunoprecipitation-mediated target identification may be applicable to the study of other transcription factor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.