Abstract

The waste of ethidium bromide (EtBr) used in the laboratory will bring a great burden to the environment, which need to be solved urgently. In the present paper, an efficient and inexpensive method for EtBr removal using chromatin extracted from common carp testis was investigated. The observation of fluorescence microscopy showed that chromatin had similar property to DNA for selective adsorption of EtBr. The results of batch adsorption showed that the removal efficiency of EtBr by chromatin exceeded 99% at pH 7.4 and 30 °C for 3 min with the EtBr concentration of 2 mg L−1 and the chromatin dosage of 0.5 g L−1, and the maximum adsorption amount of chromatin was 45.73 mg g−1. Further, the analysis of kinetic and isotherm suggested that the adsorption followed Pseudo-second-order kinetics and Langmuir isotherm model, and the calculated maximum theoretical adsorption amount of chromatin to EtBr was 48.08 mg g−1. According to thermodynamic analysis, chromatin adsorption of EtBr was a spontaneous process dominated by hydrogen bonding and van der Waals forces. This work will not only offer an adsorbent for EtBr decontamination, also provide a possibility for EtBr analogs removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.