Abstract
The pathway of molecular interactions leading to kinetochore assembly on mammalian chromosomes is unknown. Kinetochores could be specified by structural features of centromeric satellite DNA [1–3] or by specific DNA sequences, analogous to budding yeast centromeres, interspersed in centromeric satellite DNA arrays [4,5]. Alternatively, kinetochores could be epigenetic structures that replicate without strict dependence on DNA sequence [6–8]. We purified kinetochore-associated chromatin from human chromosomes by immunoprecipitation of CENP-A, a centromere-specific histone H3 homologue located in the inner plate of the kinetochore [6,9,10]. Hybridization and DNA sequence analyses of cloned kinetochore DNA fragments revealed α-satellite as the predominant sequence associated with CENP-A. A major site of micrococcal nuclease digestion was identified by mapping the termini of α-satellite clones, suggesting that the inner kinetochore plate contains phased arrays of CENP-A– α-satellite nucleosomes. These experiments demonstrate for the first time that complex satellite DNA is a structural component of the kinetochore. Further, because complex satellite DNA is evolutionarily unconserved, these results suggest that molecular recognition events necessary for kinetochore formation take place at the level of DNA conformation or epigenetic mechanisms rather than DNA sequence per se.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.