Abstract

Introduction: Genome-wide association studies(GWAS) have identified numerous stroke-associated SNPs. To understand how SNPs affect gene expression related to increased stroke risk, we studied epigenetic landscapes surrounding 26 common, validated stroke-associated loci. Methods: We mapped the SNPs to linkage disequilibrium (LD) blocks and examined H3K27ac, H3K4me1, H3K9ac, and H3K4me3 histone marks and transcription-factor binding-sites in pathologicallyrelevant celltypes (hematopoietic and vascular cells). Hi-C data were used to identify topologicallyassociated domains (TADs) encompassing the LD blocks and overlapping genes. Results: Fibroblasts, smooth muscle, and endothelial cells showed significant enrichment for enhancer-associated marks within stroke-associated LD blocks. Genes within encompassing TADs reflected vessel homeostasis, cellular turnover, and enzymatic activity. Conclusions: Stroke-associated genetic variants confer risk predominantly through vascular cells rather than hematopoietic cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.