Abstract

Chromaticity control in the Fermilab Main Injector will be important both in accelerating protons and antiprotons from 8 GeV to 150 GeV (or 120 GeV) and in decelerating recycled 150 GeV antiprotons to 8 GeV for storage in the Recycler Ring. The Main Injector has two families of sextupoles to control the chromaticity. In addition to the natural chromaticity, they must correct for sextupole fields from ramp-rate-dependent eddy currents in the dipole beam pipes and current-dependent sextupole fields in the dipole magnets. The horizontal sextupole family is required to operate in a bipolar mode below the transition energy of 20 GeV. We describe methods used to control chromaticities in the Fermilab Main Injector. Emphasis is given to the software implementation of the operator interface to the front-end ramp controllers. Results of chromaticity measurements and their comparison with the design model will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.