Abstract

The chromatic symmetric function $X_H$ of a hypergraph $H$ is the sum of all monomials corresponding to proper colorings of $H$. When $H$ is an ordinary graph, it is known that $X_H$ is positive in the fundamental quasisymmetric functions $F_S$, but this is not the case for general hypergraphs. We exhibit a class of hypergraphs $H$ — hypertrees with prime-sized edges — for which $X_H$ is $F$-positive, and give an explicit combinatorial interpretation for the $F$-coefficients of $X_H$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.