Abstract
In this article we show how to compute the chromatic quasisymmetric function of indifference graphs from the modular law introduced in [19]. We provide an algorithm which works for any function that satisfies this law, such as unicellular LLT polynomials. When the indifference graph has bipartite complement it reduces to a planar network, in this case, we prove that the coefficients of the chromatic quasisymmetric function in the elementary basis are positive unimodal polynomials and characterize them as certain q-hit numbers (up to a factor). Finally, we discuss the logarithmic concavity of the coefficients of the chromatic quasisymmetric function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.