Abstract

AbstractStanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.