Abstract

In the first few homological gradings, there is an isomorphism between the Khovanov homology of a link and the categorification of the chromatic polynomial of a graph related to the link. In this article, we show that all torsion in the categorification of the chromatic polynomial is of order two, and hence all torsion in Khovanov homology in the gradings where the isomorphism is defined is of order two. We also prove that odd Khovanov homology is torsion-free in its first few homological gradings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.