Abstract

We describe experimental and numerical results regarding the influence of chromatic dispersion in optical fibers on guided acoustic-wave Brillouin scattering (GAWBS) phase noise compensation with a pilot tone (PT). We compared the compensation performance for GAWBS phase noise generated in an ultra-large-area fiber (ULAF) where DULAF = 21 ps/nm/km with that in a dispersion-shifted fiber (DSF) where DDSF = -1.3 ps/nm/km and found that the performance depends strongly on chromatic dispersion. The numerical analysis shows that the group delay between the signal and PT caused by chromatic dispersion reduces the GAWBS noise correlation between them, which degrades the compensation performance for GAWBS phase noise. It is clarified that a condition for effective GAWBS compensation is that the group delay between the signal and PT should be less than half the period of the GAWBS phase noise component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call