Abstract
In order to control dispersion and dispersion slope of indexguiding photonic crystal fibers (PCFs), a new controlling technique of chromatic dispersion in PCF is reported. Moreover, our technique is applied to design PCF with both ultra-low dispersion and ultra-flattened dispersion in wide wavelength range. A full-vector finite element method with anisotropic perfectly matched layers is used to analyze the dispersion properties and the confinement losses in a PCF with finite number of air holes. It is shown from numerical results that it is possible to design a fourring PCF with flattened dispersion of 0 +/- 0.5 ps/(km.nm) from 1.19 m to 1.69 m wavelength range and a five-ring PCF with flattened dispersion of 0 +/- 0.4 ps/(km.nm) from 1.23 m to 1.72 m wavelength range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.