Abstract

Previous research has shown that the typical or memory color of an object is perceived in images of that object, even when the image is achromatic. We performed an experiment to investigate whether the implied color in greyscale images could influence the perceived color of subsequent, simple stimuli. We used a standard top-up adaptation technique along with a roving-pedestal, two-alternative spatial forced-choice method for measuring perceptual bias without contamination from any response or decision biases. Adaptors were achromatic images of natural objects that are normally seen with diagnostic color. We found that, in some circumstances, greyscale adapting images had a biasing effect, shifting the achromatic point toward the implied color, in comparison with phase-scrambled images. We interpret this effect as evidence of adaptation in chromatic signaling mechanisms that receive top-down input from knowledge of object color. This implied color adaptation effect was particularly strong from images of bananas, which are popular stimuli in memory color experiments. We also consider the effect in a color constancy context, in which the implied color is used by the visual system to estimate an illuminant, but find our results inconsistent with this explanation.

Highlights

  • The mechanisms in the peripheral visual pathway that support human color vision are reasonably well understood: signals from three classes of cone photoreceptor, tuned to different regions of the visible spectrum are combined by specific populations of ganglion cells in the retina in an opponent fashion

  • In the experiment we describe here, we attempt to determine whether the typical bias from expected colors of objects, known to affect color vision when that color is not present, lasts beyond the presentation of that stimulus, in a way analogous to traditional chromatic adaptation in the peripheral mechanisms

  • Since we compare chromatic judgements after viewing the images of objects to judgements after viewing the same images with phase scrambling, we control for any differential adaptation that might arise from the differences in the spatial contrast sensitivity of the chromatic mechanisms in the peripheral visual system (Mullen, 1985)

Read more

Summary

Introduction

The mechanisms in the peripheral visual pathway that support human color vision are reasonably well understood: signals from three classes of cone photoreceptor (long-, medium-, and short-wavelength sensitive, or L, M, and S), tuned to different regions of the visible spectrum are combined by specific populations of ganglion cells in the retina in an opponent fashion. These ganglion cells project to the lateral geniculate nucleus (LGN) and from there signals are sent to the cortex. In the experiment we describe here, we attempt to determine whether the typical bias from expected colors of objects, known to affect color vision when that color is not present, lasts beyond the presentation of that stimulus, in a way analogous to traditional chromatic adaptation in the peripheral mechanisms

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call