Abstract

Ion exchange resins commonly have a single functionality for either cations or anions. Resins that have a dual functionality for both cations and anions are uncommon. The objective of this study was to create dual-functional ion exchange resins derived from soybean hulls, sugarcane bagasse and corn stover. Dual-functional resins were prepared by two separate two-step processes. In the first two-step process, by-products were reacted with a solution of citric acid in order to impart additional negative charge, and then reacted with the cross-linking reagent dimethyloldihydroxyethylene urea (DMDHEU) and a quaternary amine (choline chloride) to add positive charge to the lignocellulosic material. In the second two-step process, the order of reaction was reversed, with positive charge added first, followed by the addition of negative charge. These combined reactions added both cationic and anionic character to the by-products as evidenced by the increased removal from solution of copper (Cu 2+) cation and the chromate (CrO 4 2−) anion compared to unmodified by-products. The order of reaction appeared to slightly favor the functionality that was added last. That is, if negative charge was added last, the resulting resin sequestered more copper ion than a comparable resin where the negative charge was added first and vice-versa. Cu 2+ and CrO 4 2− were used as marker ions in a solution that contained both competing cations and anions. The dual-functional resins adsorbed as much as or more of the marker ions compared to commercial cation or anion exchange resins used for comparison. None of the commercial resins exhibited dual-functional properties to the same extent as the by-product-based resins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call